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Lessons … what lessons?

• What are ―the lessons‖? 
 too early to ask!  
 dNpublications / dt is still strongly increasing 
 … and this is already one lesson: don’t expect too much too soon

• Large number of observables measured in CDF/D0 QCD working groups

• This talk covers a few which are suited for precision phenomenology

• Subjective selection of topics / not comprehensive / but detailed

• Use opportunity to discuss aspects which can not be discussed during 
overview/summary plenary talks at conferences, and neither during 
short parallel session talks dedicated to a single analysis
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Outline

• Jets: 
Variables, Algorithms, Calibration

• Inclusive Jets:
Measurement, Radius Dependence, s 

• Dijets:
Mass, Angular Distributions, New Physics

• Beyond 22 scattering
Dijet Azimuthal Decorrelations, Multi-Jet Ratios
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.

The Observable 

Jets

Comparing theory to data

from the CM frame to the detector

Jet variables
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Parton-, Hadron-, Detector- “Jets”

• Use Jet Definition to relate Observables

defined on Partons, Particles, Detector

• Direct Observation:

Energy Deposits / Tracks

• Stable Particles (=True Observable)

• Idealized: Parton-Jets 

no Observable (color confinement)

but: quantity predicted in pQCD



 Apply this correction to the pQCD calculation

 used in current MSTW/CTEQ PDF analyses

 First time consistent theoretical treatment of jet data in PDF fits 10

From Particle to Parton Level

• Measure cross section for    pp-bar  jets    (on ―particle-level‖)

Corrected for experimental effects (efficiencies, resolution, …)

Use models to study effects 

of non-perturbative processes

(PYTHIA, HERWIG)

• hadronization correction

• underlying event correction

CDF study for cone R=0.7

for central jet cross section

New in Run II !!!
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Dijets in CM frame and detector

The physics: 

in the dijet CM frame (*)

The observation: 

in the lab / detector frame

y1*

y2* = – y1* y2

y1

y* = ½ |y1 – y2|   = ½ |y1* – y2*| = |y1*| = |y2*|

yboost = ½ (y1 + y2)   = ½ log(x1/x2)

x1 x2
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Dijet Production

Described by eight variables – for example:

1. Dijet Mass  Mjj

2. or:

3.

= | 1 – 2|

5. pT2/pT1

6. M/E (jet1)

7. M/E (jet2)

8. Overall rotation in azimuthal angle 

“hard” higher-order

effects 

irrelevant in 

unpolarized pp-bar

(no reference axis)

features of

22 process

“soft” higher-order

effects 

PDFs
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.

Jet Algorithms 

IR / collinear safety

Cone jet algorithms

Successive recombination algorithms
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IR/collinear safety for observables

Infrared Safety:

 Adding a soft particle (with E0) to the final state

does not change the value of the observable

Collinear Safety:

 Replacing a final-state particle by two collinear particles 

(which share the energy of the original particle)
does not change the value of the observable

Remark:

 These definitions refer only to the observable, 
not to a calculation

Wrong to say: ―The observable is not infrared safe at NNLO‖

Correct: ―It’s not IR safe! … and at NNLO you will notice that.‖ 
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Cone Algorithms – a brief history

• Sterman/Weinberg (1977):  1st proposal for a jet algorithm 
 slide a cone to maximize energy / pT flow

• UA1 cone algorithm – obviously IR unsafe

• Snowmass Accord: improvement  iterative cone algorithm used 

in Run I by CDF/D0      (CDF added ―ratcheting‖, undocumented)

• LEP, HERA: iterative midpoint algorithms

• Run II workshop  ―Run II cone‖ iterative midpoint algorithm

used by D0  (with minor modifications)

• Run II CDF: ―searchcone algorithm‖ to avoid ―dark towers‖ 
 introduces new IR unsafety  CDF goes back to Run II cone

30 years after 1st proposal:

• G. Salam, G. Soyez: SIScone  1st IR/collinear safe cone algorithm!!
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Successive Recombination 
Algorithms

• One problem with cone algorithms (even with SIScone) remains:
Treatment of overlapping proto-jets (―split/merge‖)
Although well-defined,  and (for SIScone) IR safe
 still ugly feature (introducing additional parameters)

Avoided by successive recombination algorithms / all: IR and collinear safe

• JADE algorithm  (clustering in mass  ―phantom jets‖)

• kT algorithm   (clustering in relative kT )

• Cambridge/Aachen algorithm  (clustering in angle)

• Anti-kT algorithm   (clustering in inverse relative kT) 

 Step-by-step procedure: result is defined at any intermediate step

 Today: generally preferred         (CDF in Run II: kT algorithm)
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.

The Experiment 

Jet Energy Calibration

Correlations of uncertainties

What do we calibrate?
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Jet Energy Calibration

What shall we calibrate?

Jets for a given algorithm?

Restricted to single algorithm
for fixed parameter(s)

Further algorithms/parameters: 
redo whole effort

Does not (easily) give correlations 
between the uncertainties for 
different algorithms/parameters

Does not allow to measure 
internal jet structure

 But: Can lead to higher precision

Detector objects?

(cells, clusters, towers)

 Easier usage:

Once detector objects are 
calibrated:
run any algorithm w/ any
parameter setting over 
calibrated objects

 Get uncertainty correlations 
between results for different 
algorithms / parameter(s)

 Maybe less precision(?)
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Jet Energy Calibration

• Calibration for cone jets with R=0.5 / 0.7

• based on data  (missing ET projection method)

• Uncertainties are divided into 48 uncorrelated sources

 Huge effort

 Great result: 1% (most precise jet energy calibration
at a hadron collider)!

 Due to limited person-power:
Not able to repeat this effort for other jet algorithm(s)

• No  kT, C/A, SIScone results from D0
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.

Inclusive Jets

measurements

PDF sensitivity

Jet algorithm dependence

Jet radius dependence (vs. NLO pQCD)

s determination (& limitations)
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Inclusive Jet Production

• Run II: Increased x5 at pT=600GeV

 sensitive to ―New Physics‖:

Quark Compositeness, 
Extra Dimensions,  …(?)…

• Theory @NLO is reliable ( 10%)

 sensitivity to PDFs

 unique: high-x gluon

x2

x5

xT
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Inclusive Jets: Tevatron vs. LHC

PDF sensitivity:

 compare jet cross section at fixed
xT = 2 pT / sqrt(s)

Tevatron  (ppbar)

>100x higher cross section @ all xT 

>200x higher cross section @ xT >0.5

LHC  (pp)

• need more than 2400 fb-1 luminosity
to improve Tevatron@12 fb-1

• more high-x gluon contributions

• but more steeply falling cross sect.
at highest pT (=larger uncertainties) 
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Inclusive Jets

pT (GeV) pT (GeV)
benefit from:

• high luminosity in Run II

• increased Run II cm energy  high pT

• hard work on jet energy calibration

steeply falling pT spectrum:

1% error in jet energy calibration 

 5—10% (10—25%)  

central (forward) x-section

Phys. Rev. Lett. 101, 062001 (2008)Phys. Rev. D 78, 052006 (2008) 
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Inclusive Jets

data are used in PDF fits:

• included in MSTW2008 PDFs  

• at work: forthcoming CTEQ PDFs  

• high precision results

• consistency between CDF/D0 

• well-described by NLO pQCD

• experimental uncertainties: 
smaller than PDF uncertainties!!

 sensitive to distinguish between PDFs 

CTEQ6.5M PDFs

pT (GeV)
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Inclusive Jets 
Cone and kT Algorithms

2007/2006 results with large rapidity coverage for 1fb-1

Midpoint Cone Algorithm kT Algorithm
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Inclusive Jets 
Cone and kT Algorithms

Interpretations of CDF cone and kT jet results are consistent

For more quantitative  statement  study the ratio

Midpoint Cone Algorithm kT Algorithm

Phys. Rev. D 75, 092006 (2007)

http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRVDAQ000075000009092006000001&idtype=cvips&gifs=yes
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Comparing kT vs. cone jets

S. Ellis et al, Prog.Part.Nucl.Phys.60:484-551,2008

theory here: 

ratio of NLO cross sections   only LO prediction for the ratio  

Compare ratio of inclusive 
jet cross section for kT 

and cone jet algorithm

In

• data

• theory 
(as the ratio of 
NLO calculations 

for cross sections)

CDF inclusive jets 
for kT and cone:

―errors are considered to be uncorrelated‖  correlation is not known!
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Radius Dependence
of Jet Cross Sections

 For quantitative test: 
study ratios and compute prediction at true NLO (using 3-jet NLO)

CDF: radius dependence for 
incl. jets (kT jet algorithm) 
for D (=radius) parameter 
D = 0.5, 0.7, 1.0

 Results for each D value
are compared to NLO pQCD
calculation + non-pert corr.

 agreement for all D values

(similar analysis in DIS by ZEUS)

Phys. Rev. D 75, 092006 (2007)

D=0.5                 D=1.0

Jet cross section depends on 
radius in jet definition

 Important testing ground

http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRVDAQ000075000009092006000001&idtype=cvips&gifs=yes
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Radius Dependence of
Jet Cross Sections @NLO

Ratio of cross sections:

• Jet cross section at LO        no radius dependence

• Jet cross section at NLO  LO contribution to radius dependence

• Jet cross section at NNLO  NLO contribution to radius dependence

NNLO calculation not available  missing: 2-loop virtual corrections
 but: 2-loop virtual correction don’t depend on radius  (22 kinematics)
 contributions from 2-loop corrections cancel in difference

Use three-jet NLO calculation to compute difference
 obtain NLO result for ratio:

 use for first NLO study of radius dependence of jet cross sections
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Radius Dependence of
Jet Cross Sections @NLO

T. Kluge, M.W. – work in progress 

 NLO corrections are       <20% for Tevatron

 most of pT range: dominated by non-pert. corrections

Study cross section ratios:

(D=1.0/D=0.7) and  (D=0.5/D=0.7) and compare with true NLO calculation             

CDF                                            
scales:  mu=pT (0.5 pT, 2pT)

only at highest pT :

 agreement at the edge of scale 
dependence 

disagreement at lower pT :

 larger radius dependence in data
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Radius Dependence of
Jet Cross Sections @NLO

T. Kluge, M.W. – work in progress 

 NLO corrections are       <20% for Tevatron       ~60-100% for HERA

 most of pT range: dominated by non-pert. corrections

 HERA data described   /  Tevatron data not    underlying event???

CDF                                            ZEUS

Study cross section ratios:

(D=1.0/D=0.7) and  (D=0.5/D=0.7) and compare with true NLO calculation             



Strong Coupling Constant

inclusive jet cross section is sensitive to 

jet

jet

previous CDF result from Run I: PRL88, 042001 (2002)
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Strong Coupling Constant

Use MSTW2008NNLO PDFs as input

 Cannot test RGE at pT >200 GeV
(RGE already assumed in PDFs)

 Exclude data points with

(unknown correlation with PDF uncert.)

 22 (out of 110) inclusive jet cross 

section data points at 50<pT <145 GeV

 NLO + 2-loop threshold corrections
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Running of alpha-s (?)

 so far tested 

up to r = 200 GeV

Could be modified 
for scales  r > 

e.g. by extra dimensions

here: = 200 GeV 

and n=1,2,3 extra dim.
(n=0  Standard Model)

s extraction from inclusive jets uses PDFs which were 

derived assuming the RGE 

 We cannot use the inclusive jets to test the RGE in yet untested region
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Lessons from incl. jets (1) 

The inclusive jet cross section – double differentially vs. (pT ,y)

• Consistency between CDF and D0 (and between cone/kT)

• Traditionally THE measurement to constrain PDFs
 although triple dijet cross section (pT,y*,yboost) is more sensitive

• More useful if measured with IR safe jet algorithms 
 if possible successive recombination: kT, CA, anti-kT

• this measurement requires 

• best possible energy calibration

 Calibrate jets / or detector objects?

• Knowledge of correlations of uncertainties (calibration, resolution) 
over pT and rapidity: D0 uses 48 separate sources
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Lessons from incl. jets (2) 

The inclusive jet cross section – double differentially vs. (pT,y)

• Important testing ground: Measurement of 

• radius dependence (for given algorithm)

• Jet algorithm dependence (for given radius)

 both require correlations of uncertainties between jets 

for different radii / different algorithms
 not available for existing CDF / ZEUS measurements
 easier if energy calibration is done for energy depositions 

(cells/clusters/towers) not possible if energy calibration 
 correlations must be documented in publications

• Limited sensitivity to alpha-s: 
 no independent test of RGE, since alpha-s extraction requires input 

from PDFs, which already use alpha-s and the RGE in the evolution.
 determination restricted to region where RGE was found to be valid
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.

Inclusive Dijets

dijet mass distribution

Angular ratios or angular ratios?

Dijet angular distributions

New Physics limits
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Dijet Mass Distribution

central dijet production |y|<1 

• test pQCD predictions

• sensitive to new particles decaying 
into dijets: excited quarks, Z’, W’, 
Randall-Sundrum gravitons, color-
octet, techni-rho, axigluons, colorons
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Dijet Mass Distribution

central dijet production |y|<1 

• test pQCD predictions

• sensitive to new particles decaying 
into dijets: excited quarks, Z’, W’, 
Randall-Sundrum gravitons, color-
octet, techni-rho, axigluons, colorons

Phys. Rev. D 79, 112002 



Dijet Mass Distribution

central dijet production |y|<1 

• test pQCD predictions

• sensitive to new particles decaying 
into dijets: excited quarks, Z’, W’, 
Randall-Sundrum gravitons, color-
octet, techni-rho, axigluons, colorons

 data with Mjj > 1.2 TeV!
 all described by NLO pQCD

no indications for resonances
 set limits on new particles

Phys. Rev. D 79, 112002 
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Dijet Mass Spectrum

in six |y|-max regions 

0<|y|-max<2.4

Extend QCD test to forward region 

 data with Mjj > 1.2 TeV!
 described by NLO pQCD
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Dijet Mass Spectrum

in six |y|-max regions 

0<|y|-max<2.4

Extend QCD test to forward region 

 data with Mjj > 1.2 TeV!
 described by NLO pQCD

• no indications for resonances

 PDF sensitivity at large |y|-max

• CTEQ6.6 prediction too high

• MSTW2008 consistent w/ data
(but correlation of experimental
and PDF uncertainties!)



variable:

at LO, related to CM scattering angle

• flat for Rutherford scattering

• slightly shaped in QCD  

• new physics, like
- quark compositeness
- extra spatial dimensions

 enhancements at low 

43

Dijet Angular Distribution

small y large y
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Sensitivity to New Physics

Ratio of NP/SM in different 
dijet mass regions 

 Highest sensitivity to New 

Physics at high dijet masses
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“Controversy” from Run I

D0 had two Run I analyses, both searching for quark substructure:

“dijet angular distributions”

In different mass regions

 Measure angular distribution

 Quark Compos. Limit 2.2 TeV

“dijet mass distributions”

In different angular regions

 Measure mass distribution

 Quark Compos. Limit 2.7 TeV

Do the dijet mass distributions have a higher sensitivity?

 No! The two analyses are essentially measuring the same quantity

 The difference is due to poor choices in the ―dijet angular 
distributions‖ analysis       (see next slides)

 In contrast, the ―dijet angular distributions‖ are more sensitive! 
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Run I “dijet angular distrib.”

Measure distributions in

in four mass regions.

Highest mass region only:  M > 635 GeV

 very high statistics >1000 events

Phys. Rev. D 64, 032003 
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Run I “dijet angular distrib.”

Measure distributions in

in four mass regions.

Highest mass region only:  M > 635 GeV

 very high statistics >1000 events

 And present ratio

= (small y* / large y*)

vs. dijet mass

Phys. Rev. D 64, 032003 
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Run I “dijet mass”

Measure dijet mass distributions 

at        0.0 < |eta| < 0.5

and at  0.5 < |eta| < 1.0 

 Present result as:
ratio (small angles / large angles)
vs. dijet mass

 Smeared version of 

(small y* / large y*)

 Data 
(although w/ low statistics)
at high masses > 800 GeV

 Same as dijet angle, but 
reach higher masses

Phys. Rev. D 64, 032003 
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Dijet Angular Distribution

New analysis in Run II:

• Combine the best aspects of the 
two Run I analyses 
+ further improvements:

• Measure
(higher sensitivity in CM frame)

• Go to highest masses 
(even if statistics per bin is small)

• Analyze whole shape of distribution

• Don’t reduce the distribution to 2 bins
as done in 



50

Dijet Angular Distribution

Measurement for dijet masses

from 0.25 TeV  to  >1.1 TeV

 normalized distribution                   

 reduced experimental 

and theoretical uncertainties 
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Dijet Angular Distribution

Measurement for dijet masses

from 0.25 TeV  to  >1.1 TeV

 normalized distribution                   

 reduced experimental 

and theoretical uncertainties 

First time: 

Rutherford experiment above 1TeV  

P
h
y
s. R

e
v. L

e
tt.
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Dijet Angular Distribution
New Physics Limits

Use full         shape 

of corrected data

Bayesian and       methods  @95%CL

• Quark Compositeness Λ > 2.9TeV

• ADD LED (GRW)    Ms > 1.6 TeV

• TeV-1 ED              Mc > 1.6 TeV

Test multiple models at highest possible energies:

• Probing quark substructure 

• Sensitive to extra spatial dimensions
- virtual exchange of KK excitation of graviton (ADD LED) 
- virtual KK excitation of gluon (TeV-1 ED) 

all: most stringent limits! 
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Lesson: Dijet angular distribution 

Dijets double differentially vs. (chi, Mjj)

• No real difference between D0 Run I measurements of 
dijet mass ratio (central / forward) and dijet angular distribution    
 both are essentially the same 
 different sensitivity due to different choices of mass bins 

• Most information & highest sensitivity by measuring dijet
angular distribution (y*) and analyzing the full shape

• Optimize sensitivity:

• Don’t stop at low masses (don’t insist on high statistics/chi bin)

• Better: extend to higher masses  even with less statistics/bin
 higher sensitivity

recent preliminary CDF result ―limited by systematics‖
 indication of wrong method 

 if one is not yet limited by statistics, one should measure 

at higher masses (statistics limited but higher sensitivty)
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.

Dijets beyond 2  2

Dijet azimuthal decorrelation

Monte Carlo tuning

Multijet ratio: R3/2
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higher order processes

Strategy:

Testing higher order processes, 
while insensitive to non-perturbative physics:

• Hadronization

• Underlying event

• PDFs

 Only to strong dynamics

 Use normalized distributions (i.e. ratios of cross sections) 
sensitive to 3-jet production

• Dijet azimuthal decorrelations

• Multijet ratios  R3/2
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Dijet Azimuthal Decorrelation

Idea: Dijet Azimuthal Angle is

Sensitive to Soft & Hard Emissions:

• Test Parton-Shower 

• Test 3-Jet NLO

PRL 94, 221801 (2005)
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Dijet Azimuthal Decorrelation

Compare with theory:

• LO has Limitation >2pi/3

& Divergence towards pi

PRL 94, 221801 (2005)
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Dijet Azimuthal Decorrelation

Compare with theory:

• LO has Limitation >2pi/3

& Divergence towards pi

• NLO is very good – down to pi/2

& better towards pi

… still: resummation needed

PRL 94, 221801 (2005)
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Dijet Azimuthal Decorrelation

Compare with theory:

• LO has Limitation >2pi/3

& Divergence towards pi

• NLO is very good – down to pi/2

& better towards pi

… still: resummation needed

• HERWIG is perfect ―out-the-box‖

• PYTHIA is too low in tail …

PRL 94, 221801 (2005)
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Dijet Azimuthal Decorrelation

Compare with theory:

• LO has Limitation >2pi/3

& Divergence towards pi

• NLO is very good – down to pi/2

& better towards pi

… still: resummation needed

• HERWIG is perfect ―out-the-box‖

• PYTHIA is too low in tail …

… but it can be tuned (tune DW) 

(―tune A‖ is too high!)

PRL 94, 221801 (2005)
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Dijet Azimuthal Decorrelation

Compare with theory:

• LO has Limitation >2pi/3

& Divergence towards pi

• NLO is very good – down to pi/2

& better towards pi

… still: resummation needed

• HERWIG is perfect ―out-the-box‖

• PYTHIA is too low in tail …

… but it can be tuned (tune DW) 

(―tune A‖ is too high!)

• SHERPA is great

• ALPGEN looks good – but low

efficiency  large stat. fluctuations

PRL 94, 221801 (2005)
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Multijet ratio R3/2

Study ratio of 3-jet and 2-jet cross sections (for jets above pTmin)

as a function of leading jet pT (pTmax)

For DeltaPhi  agreement between  data, PYTHIA tune DW, SHERPA

Here: strong disagreement between  PYTHIA tune DW and SHERPA

… where is the data??                        coming soon …  
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Lesson from DeltaPhi & R3/2

Most observables used in tuning are sensitive to soft physics only

 Danger: optimization of hard physics in parton shower to soft 
observables may screw up description of hard processes

Important: Measurements of observables, sensitive to hard physics

 DeltaPhi, R3/2  are unique sources of information for MC tuning
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.

Conclusions

… see lessons from

Inclusive jets

Dijets

―beyond 22‖
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Lessons from incl. jets (1) 

The inclusive jet cross section – double differentially vs. (pT ,y)

• Consistency between CDF and D0 (and between cone/kT)

• Traditionally THE measurement to constrain PDFs
 although triple dijet cross section (pT,y*,yboost) is more sensitive

• More useful if measured with IR safe jet algorithms 
 if possible successive recombination: kT, CA, anti-kT

• this measurement requires 

• best possible energy calibration

 Calibrate jets / or detector objects?

• Knowledge of correlations of uncertainties (calibration, resolution) 
over pT and rapidity: D0 uses 48 separate sources
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Lessons from incl. jets (2) 

The inclusive jet cross section – double differentially vs. (pT,y)

• Important testing ground: Measurement of 

• radius dependence (for given algorithm)

• Jet algorithm dependence (for given radius)

 both require correlations of uncertainties between jets 

for different radii / different algorithms
 not available for existing CDF / ZEUS measurements
 easier if energy calibration is done for energy depositions 

(cells/clusters/towers) not possible if energy calibration 
 correlations must be documented in publications

• Limited sensitivity to alpha-s: 
 no independent test of RGE, since alpha-s extraction requires input 

from PDFs, which already use alpha-s and the RGE in the evolution.
 determination restricted to region where RGE was found to be valid
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Lesson: Dijet angular distribution 

Dijets double differentially vs. (chi, Mjj)

• No real difference between D0 Run I measurements of 
dijet mass ratio (central / forward) and dijet angular distribution    
 both are essentially the same 
 different sensitivity due to different choices of mass bins 

• Most information & highest sensitivity by measuring dijet
angular distribution (y*) and analyzing the full shape

• Optimize sensitivity:

• Don’t stop at low masses (don’t insist on high statistics/chi bin)

• Better: extend to higher masses  even with less statistics/bin
 higher sensitivity

recent preliminary CDF result ―limited by systematics‖
 indication of wrong method 

 if one is not yet limited by statistics, one should measure 

at higher masses (statistics limited but higher sensitivty)
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Lesson from DeltaPhi & R3/2

Most observables used in tuning are sensitive to soft physics only

 Danger: optimization of hard physics in parton shower to soft 
observables may screw up description of hard processes

Important: Measurements of observables, sensitive to hard physics

 DeltaPhi, R3/2  are unique sources of information for MC tuning



69

.
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.

backup 



Fermilab Tevatron - Run II

DØCDF

• 36x36 bunches
• bunch crossing 396 ns
• Run II started in March 2001
• Peak Luminosity:3.5E32 cm-2 sec-1

• Run II delivered: ~7 fb-1

• Run II Goal: 12 fb-1 end of 2011

Tevatron

Main Injector
& Recycler

Booster

p-bar source

pp at 1.96 TeV
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Run II Detectors

Multi-Purpose Detectors:
• Tracking
• Calorimeter
• Muon System

New in D0 for Run IIb:
Innermost ―Layer 0‖ Silicon
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Internal Jet Structure

Integrated Jet Shape:

Fractional pT in Subcone vs.(r/R) 

Rjet
r

CDF, PRD, hep-ex/0505013 (170pb-1) 

Sensitive to Soft and

Hard Radiation – and UE

Well-Described by (tuned) MCs
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Internal Jet Structure

At fixed r=0.3   (38<pT<400GeV)

study pT dependence of predicted

Psi(r/R) for quark- & gluon-jets

 significant difference

quark- & gluon-jet mixture in

tuned PYTHIA gives good 

description of data
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Inclusive Jet Cross Section

 data are used in MSTW2008 PDFs   (LO, NLO, NNLO)

submitted to PRL arXiv:/0802.2400 [hep-ex]

• data are well-described by NLO pQCD

• experimental uncertainties: smaller than PDF uncertainties!!

• data favor lower edge of CTEQ 6.5 PDF uncertainties at high pT

• shape well described by MRST2004

http://arxiv.org/abs/0802.2400
http://arxiv.org/abs/0802.2400
http://arxiv.org/abs/0802.2400
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Run I: dijet angular distributions

• Mass range >635 GeV:
10 bins with statistical errors <10%   more than 1000 events

• Would have allowed to have a significantly higher mass range
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.

Photons 

test theory

fixed order: NLO  

resummation

PDFs
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(all quark/anti-quark
subprocesses)

Direct Photon Production

direct photons emerge unaltered from the hard subprocess 

 direct probe of the hard scattering dynamics

 sensitivity to PDFs  (gluon!)  …but only if theory works 

also fragmentation contributions:

suppress by isolation criterion

 observable:  isolated photons
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Incl. Isolated Photons 

pT (GeV)

• CDF and D0 measurements: 20< pT <400GeV  agreement

• data/theory: difference in low pT shape

• experimental and theory uncertainties  >  PDF uncertainty
 no PDF sensitivity yet

• first: need to understand discrepancies in shape 

pT (GeV)

Phys. Lett. B 639, 151 (2006)
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Isolated Photon + Jet

investigate source for disagreement

measure more differential:

• tag photon and jet 
 reconstruct full event kinematics

• measure in 4 regions of y yjet

- photon: central
- jet: central / forward
- same side / opposite side

pT (GeV)

L = 1 fbL = 1 fb--11

discrepancies in data/theory  

 figure out what is missing…

• higher orders?

• resummation?

• …???

Phys. Lett. B 666, 2435 (2008)
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Isolated Photon + HF Jet
Phys. Rev. Lett. 102, 192002 (2009)

Photon + (b/c) jet + X

Photon pT : 30-150 GeV

0.01<x<0.3     b, c, gluon PDF

 test gluon splitting contribution

tag photon and jet 

Rapidities:

 triple differential 
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Isolated Photon + HF Jet

 photon+b: 
agreement over full 
pT range: 30-150 GeV
 no PDF sensitivity

 photon+c: 

- agree only at pT<50GeV

- disagreement increases

with photon pT 

- using PDF including 
intrinsic charm (IC)
improves the theory
pT dependence

pT (GeV)

L = 1 fbL = 1 fb--11
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Di-Photon Cross Section

 DIPHOX: 
- NLO prompt di-photons 
- NLO fragmentation (1 or 2 )
- NNNLO gg corrections

 ResBos: 
- NLO prompt di-photons
- LO fragmentation contribution
- Resummed initial state gluon

radiation (important for qT)
 PYTHIA (increased by factor 2)

CDF Collab., Phys. Rev. Lett. 95, 022003, 2005. (207pb-1)

• Pseudorapidity < 0.9
• Photon pT> 13 & 14 GeV   

DIPHOX: with and w/o 
NNNLO gg-diagram

M (GeV/c2)
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Di-Photon Cross Section

• NLO fragmentation contribution

- only in DIPHOX 

 at high qT, low , low mass

• Resummed initial-state gluon radiation 
– only in ResBos  at low qT

Additional measurement for
(gamma-gamma) < /2

(open markers) 
compared to DIPHOX

(rad)

Important:

need combined calculation with

NLO fragmentation

& initial state resummation


